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i  INTRODUCTION 

It is clear that a fundamenta] understanding of turbulence would be 

of great practical significance. Since it is suspected that on the very 

smallest scales turbulence has certain universal features, it might be 

hoped that these would be revealed by a direct numerical simulation. 

Unfortunately the problem of fully developed turbulence is one involving 

very nu .y degrees of freedom.  Indeed, if R is the Reynolds number, the 

necessary degrees of freedom to be treated in a given dimension are of 

3 4 
the order of R In three dimensions this number is then of the order 

9/4 
of R   (see, foi example, Landau and Lifshitz, 1959:  for more detailed 

estimates, see Case et al., 1973).  Since time steps are restricted by 
3 

space steps, the number of needed calculations then grows as R  (Case 

et al., 1973).  For the large values of R occurring in practice the 

computations then become prohibitive with present (or soo.>-to-be-available) 

computers. 

Under these circumstances it is perhaps reasonable to back off a bit 

and ask what can be done in the way of a numerical investigation of the 

transition from laminar to turbulent flow,  here, unless otherwii» indi 

cated, we restrict ourselves for simplicity to the incompressible case— 

i.e., our flows are described by the Navier-Stokes equations 

2V 2 
.1^: + v . Vv = -VP + vV v 
at    ~     ~ 

(1) 

V . v = 0 (2) 

References are listed at the end of tho report. 
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Knowledge of such transitions also has considerable significance for 

practical designs.  The hope is that we will be able to treat such prob- 

lems with presently available computers, since: 

(1) Transition frequently takes place at relatively low 
Reynolds number. 

(2) Transitions are frequently seen to develop throt-h a 

number of stages in which the flow is relatively large- 

scale (i.e., involving relatively fev. degrees of freedom) 

Experimentally, the transition takes place in many different ways. 

Indeed, for a given practical situation more than one mechanism may be 

responsible.  There are a number of ways in which one can characterize 

the different possibilities.  None of these is completely satisfactory 

in that the descriptions are not necessarily unique or mutually exclusive. 

One such cataloging is in terms of whether the transition occurs in a 

flow that is inviscidly stable or not.  Another rather convenient dis- 

tinction is between transitions in "free" or "bound" boundary layers 

(Sato and Kuriki, 1961).  In essence, the difference is between flows 

that become turbulent rapidly and those that become turbulent gradually. 

It is the latter class that we expect to be most amenable to numerical 

simulation.  However, as we will see, the division is by no means sharp. 

Accordingly, we consider .he calculation of transition in a variety 

of simple situations that have shown different forms of transition.  We 

start with problems in which there is much detailed experimental infor- 

mation available and some theoretical insight.  As will be seen, this 

knowledge is very useful in showing us what size calculation must be 

performed and what one expects to be able to describe.  Assuming that 

the initial calculations are successful, we then indicate others that can 

be done that hopefully will lead to methods, in which there is confidence, 

for calculating transition in situations of practical interest. 

2 
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Our program is then as follows.  First we consider various situations 

in which transition could be calculated.  These are enumerated essentially 

in the order of what we consider their priority.  m each case we describe 

the physics of the situation and our present understanding.  In various 

degrees of detail we discuss the limitations of the calculations (reso- 

lution needed and uncertainties). An estimate is then made of the compu- 

tation effort required.  Second, we give some recommendations as to how 

a program to do these things could be implemented.  These include cost 

per year, number of years, organization, and supervision. 

It is felt certain that such a program would contribute significantly 

to the present state of the art with a relatively modest expenditure of 

funds.  It is hop^d this will lead to a capability of doing some practi- 

cal calculations. 
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II  THE FLAT PLATE 

As a first calculation we suggest the numerical study of the transi- 

tion in the boundary layer in the flow over a flat plate. The advantages 

of this are: 

(1) Codes ior this have been developed and some calculations 

have been performed (Grosch, 1974; Orszag, 1974). 

(2) Excellent detailed exptrimental information is available 

(Klebanoff et al., 1961; Kovasznay et al., 1962). 

(3) Considerable theoretical insight is available.  Thus 

the initial stage of laminar instability is well under- 

stood (Schlichting, 1960).  Theoretical models give a 

qualitative picture of what happens in the later stages 

(e.g., Benny, 1961; Stuart, 1962; Lin and Benny, 1962; 

Greenspan and Benny, 1963). 

There are also disadvantages: 

(1) As indicated in our earlier report (cf. Schlichting, 

1960, p. 386) there are some ambiguities concerning 

downstream boundary conditions. 

(2) At the last stages before complete turbulence is 

obtained, small-scale motions are found.  There is 

some question as to whether a calculation designed to 

follow the earlier stages of transition can resolve 
these. 

We return to these two points later. 

To illustrate what is involved in the calculation of transition of 

the boundary-layer flow over a flat plate, we give a brief (and idealized) 

version of the experiment described by Klebanoff et al. (1961). 

Over a flat plate located at x s 0, y = 0 there flows a fluid with 

velocity Uoo in the x direction toward the plate.  The pressure gradient 

Preceding page blank 
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is  adjusted to  be  zero.     A ribbon is   located above  the  plate in a  span- 

wise   (z)  direction perpendicular to the  flow at   some distance downstream 

from the leading  edge.     Under the ribbon  there  are  strips uniform in 

length and uniformly separated.    With  the  ribbon staMonary the x  component 

(u)  of  the velocity  is,   fo.- any x and z,   as  shown in Figure  1. 

FIGURE 1      MEASURED VELOCITY DISTRIBUTION  IN THE  LAMINAR BOUNDARY  LAYER 
ON A  FLAT PLATE AT ZERO INCIDENCE.    Source:    Schlichting (I960). 

The ribbon  is   then vibrated at  a  frequency  f.     At  small amplitudes 

of oscillation the results are as follows.     For a  fixed distance x down- 

stream the velocity varies essentially sinusoidally in time and with wave- 

length,  which  is   the  periodicity of  the  strips   in the  z direction.     The 

average velocity  distribution as a  function of  y  retains essentially the 

form of Figure  1.     As we go downstream the  amplitude of the oscillations 

in u first increases and then gradually decreases. 
/ 
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At  a  larger amplitude of oscillation the  picture  changes.     As we 

proceed downstream from the  ribbon the  situation Is   first  as above. 

Further down,  however,   there develops  *  pronounced  three-dimensional 

structure  characterized by  large spanwl.e variations  in wave amplitude 

with  "peaks" and  "valleys" occupy ng fixed spanwlse  positions.     Associated 

with this  variation  in amplitude there  is  also  a  spanwlse variation in 

local  mean velocity such  that  there is  a  defect  at  a  peak and an excess 

at  a valley.     Further downstream there occurs  an abrupt  increase  in 

amplitude at  a  peak  that  is  characterized  by a  series of  intense  low- 

velocity pulses-evidenced by "spikes"  i„ an oscillogram of streamwise 

fluctuating velocity.     At  first a single  spike  appears  for each cycle of 

the primary oscillation.     The spikes  increase  in number as we go down- 

stream and ultimately blend into fully developed  turbulence. 

Present  theoretical understanding  is   the  following.     In the absence 

of  the vibrating ribbon the stationary  laminar  flow  is  adequately 

described by the  boundary-layer equations  for  the velocity   [u(x.y).vCx,y), 
w = 0]: 

"öu      vdu d u 
dx dy  " V ~~2 

dy 
(3a) 

du      äv 
dx      dy (3b) 

u=v=0aty=0 lim u = U 

Those equations  have the Blasius similarity solution 

\ 

u  = U f(Tl) 
00 V   = 

U v 
00 

(4) 

( 



where 

With 

^^"^ 

Ti = y. 

f(Tl)   = cp'CTl) i^CT])   =  l/2[t\v'(T\)   -  cpl 

we have 

cpcp      + 2cp       =0 (5) 

subject  to 

cp(0)   = cp'CO)  = 0 cp'(»)   =  1 

Numerical  integration then gives the velocity profile of Figure  1—in 

excellent  agreement  with experiment. 

Remarks; 

(1)     Two conventional  measures of  the boundary-layer 
thickness used are: 

(a)    6   = that value of y for which u  = 0.9911^. 
Numerically, 

—   F (6) 

(b)    6     = ••fKh—^ 
(2)     For the experiment  of Klebanoff et  al.   (1961)  approxi- 

mate numbers  are  U» M 1500 cm/s,  v  = 0.15  cm /s,   and 
x ~  100 cm.     TTien,  6     L..       ~ 0.5  cm.     Typically 
ribbon ribbon 
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the variations described above occurred within 40 cm 

of the ribbon.  At this point 6 has changed by only 

~20%. 

(3) From Figure 1 and the above we conclude: 

(a) The velocity distribution varies smoothly within 
the boundary layer. 

(b) After but a few 6 from the plate (^1 cm for the 

experiment) the flow is essentially arbitrarily 

close to the free-stream velocity. 

Tc study the effect of external disturbances it Is natural to turn 

to linear stability theory.  Thus, in Eqs, (1) and (2) we substitute 

u = u  + 6u 
~  ~o   ~ 

(7) 

where u is the original laminar flow, and we retain only terms linear 

in the perturbation 6u.  Assuming that a time dependence 6u ~ e" ^ leads 

to an eigenvalue problem.  If it is found that Im üü = üü is > 0, then 

initial perturbations can grow, and we have instability. In  practice, 

another approximation Is made.  Stability locally is studied by assuming 

that the profile (y dependence) is such that the one at a given position 

Xo really extends from -oo < x < oo,  (Since in the problems considered 

here the true x variation of the profile is very slow, this is a readily 

justifiable approximation).  In this case th-? eigenvalue problem is 

simplified.  Since there is no explicit x-dependence we can limit our- 

selves to investigating solutions with x and z dependence of the form 
-(ox+ßz)   , 

~ •       .  LSince Squire's theorem (Schlichting, 1960, p. 386) assures 

us that the onset of instability occurs first when P = 0, the original 

solutions of the eigenvalue problem were obtained for this case].  With 

this form of x-dependence the eigenvalue problem can be regarded as one 

in which a  is given (real) and the complex uu is sought. 

Figure 2 gives the results for an old calculation of the curve for 

neutral stability in the 06 , R.  = U 6Vv plane.  It may be noted that 
0 ♦   00 

I 
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FIGURE 2      CURVE OF NEUTRAL STABILITY FOR THE 
WAVELENGTHS ah* OF THE DISTURBANCES 
IN TERMS OF THE  REYNOLDS NUMBER  R 
FOR THE BOUNDARY  LAYER ON A FLAT 
PLATE AT ZERO INCIDENCE (Blaslus Profile). 
Source:     Schlichtmg  (I960). 

for instability,  R6+  must  be greater than a  critical value R        ~ 500 

and Qr6*  must   be  less  than about  0.36   (i.e.,   there is  a  minimum wavelength 

Xmin " 2n6   /0,36  " 17-56* - G6  for instability).    For the experiment 

described above  this wavelength is X ~ 3  cm,  while the distance x 
min c 

downstream from the  leading edge where instability can possibly occur  is 

x    ~ 80 cm. 
c 

For the experiment,  however,  it  is somewhat more relevant  to con- 

sider a real  ■ and find the,  in general,   complex o.     (With a    = Im a < 0, 

we have spatial amplification.)    A neutral  curve in the u),  R      plane is 
6 * 

shown in Figure 3.     We  see  that  there  is  a  maximum frequency for which 

such spatial  amplification holds.     This  is 

tt>      6 
max 

* 0.19 

10 

^m tt* 



^ -*» 

FIGURE 3      CURVE OF  NEUTRAL STABILITY FOR THE 
FREQUENCY ^ OF THE DISTURBANCES" 
AND WAVE PROPAGATION VELOCITY c, 
FOR THE BOUNDARY LAYER ON A  FLAT 
PLATE AT ZERO  INCIDENCE (Blasius Profile) 
Source:    Schlichting (I960). 

For   the  experiment  described,   this   is: 

t        ~ 300 c/s max 

We  note  also  from Fieure   •?  thot   +»,„     u ipure  3  that   the  phase velocity   (c     = ./»)  of  the 
ni.nt ..^1       . . _ r neutral waves Is of order 0.4U    or  less. 

«.e .„eoretioal  picture of the early st.ee, of the e.per^ut 

descrfhe. .. theu the  follo.lng.     *. osclUatlng ^ ^^ _ 

of  .avele^th X > , «.    Wese are theu a.pllf^. as „ go do.ustrea.. 

the lumal perturhattou U s„fflclently SM11 „ ^ ^ 

«he rlBht-ha,d „eutral  curve hefore the a.p,„tuaes are  large e„„ugh to 

»of. the  lluear assunptfou.    As m eo tarther d„„stream ^ ^^^^^ 

-iU  theu he dampea out.    Ou the other haut,,  if the iui.i.i dlstllr|)ante 

..  lar6e euough it .ill  he anplifi«, „„„!„ .he „„stähle regiou aowu- 

stream to a point .hero  liuear-stabilitv theorv „„  , unity theory uo  luuser applies aud 
cannot  be used for prediction 

11 
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One  further result  of  linear-stability theory of  importance  for us 

i.s  the shape of   the eigenfunctions  corresponding to  the unstable mode. 

Fron. Figure  4 we  see  that   they vary rapidly  in the  part  of  the boundary 

layer between y  = 0 and y = 0.2 -  0.46.     (For the experiment,   this  number 

is  y - 0.1 -  0.2  cm.)    Outside  this   region  the variation is  rather smooth 

16 
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I 
FIGURE 4       VARIATION OF AMPLITUDE OF THE u'-FLUCTUATION FOR 

TWO NEUTRAL DISTURBANCES IN A  LAMINAR  BOUNDARY 
LAYER ON FLAT PLATE AT ZERO  INCIDENCE.    The curves 
labeled I and 11 correspond to the two neutral disturbances I and 
I.  m Figure 2.    Source:    Schlichting (1960). 

The  further  development  of  the  flow toward  turbulence is  somewhat 

less  know, theoretically.     From models   (Benny,   1961;   Stuart.   1962;   Lin 

and Benny.   1962;   Ore .nspun.   1962;   Greenspan and Benny.  1963)  and experi- 

ment   (Klebanoff et  al.,   1961)  it appears  that  the amplified two-dimensional 

Tollmien-Schlichting wave  interacts,   as  a  result  of  nonlinear terms, 

with true 3-dlmensional disturbances  produced by the spacers,     mis 

combination then gives  rise  to the distorted boundary  layer which in 

turn  results  in the  production of  the  high-frequency disturbances.     While 
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the primary contribution of  a  numerical  simulation would be  to allow the 

development of  the  nonlinear interaction,   two qualitative conclusions 

can be drawn: 

(1) Resolution in the spanwise   (z)  direction must  be 
sufficient   so that  the expected peaxs  and valleys 
can be adequately differentiated. 

(2) While   the  Tollmien-Schlichting waves  have  their 
largest  amplitudes  and sharpest  variation close to 
the plate   (~0.l6)  the fluctuations near breakdown 
have their   largest  values  much farther out   (~0.56)— 
cf.  Figure  5.     From this we  conclude that  even at 
these  distances  the  resolution cannot  be  too  coarse. 

FIGURE 5 DISTRIBUTION OF INTENSITY OF u-FLUCTUATION ACROSS BOUNDARY 
LAYER: 145-c/s WAVE, U^/v = 3.1 X 105 ft-1. Source: Klebanoff et al. 
(1961). 

Let  us  now turn to the numerical  simulation of  the  above experiment, 

Cltarly,  finite computer capacity restricts us to a discussion of the 

fljw to some finite region of  space and time.     In the  x   (strepmwise) 

direction this  should begin somewhat   downstream from the  leading edge of 

13 
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the plate ,„ assure the lnm.1 establish.»,« „t the laM„,r no.    hut 

upstream ,„. the rlhhou to dln,ln.sh spurious .tt.ct. due to incorrect 

boundary conditions.    A reasonable .uess .„uid he to st.rt at a p<sltl„n 
<a-5>^. "»st""" '«. the  ribbon  (.here X^  Is  the n,l„lmu. „„stahle 

•.oUMen-Scbllchtln, .a.elengtb,.    ^„strea« tro. the ribbon .o „uld 

lik. to include all positions tin the onset o. turbumnce.    EXperlTOnt.ny 

this is ^X^.    „„.ever, as Indicated,  later ambiguities In the boundary 

conditions suggest that   the end position be chose.-, as far denstrea. as 

feasible.    A compromise might he that the region «n * to be described 

is of the order o.   (10-20)^.    since In the sp,„wise  (., dlrectlon „ 

are describing a periodic behavior, .e can restrict ourselves to a dis- 

tance edual ,„ one »avelength of tb, spat.lse perturbation,    in the 

direction perpendicular  to tbe plate .e  can,   since  the  laminar How and 

... Perturbations go to zero rapidly outside the boundary-layer thlchneas 

6, restrict ourselves  to a distance ol a ,„ ,   <say,  26).    ,„ „^ „ 

•ould llke to lollo» the lie. lor some slgnllicant   „umber ol oscin.tlons 

tt T he the period of  the ribbon the  time ol  Interest  may be „1  the order 
of   (5-10)T. 

No. what do these dimensions Imply about the number o, calculations 

to be perlormed,    The problem Is to solve Bqs.   «, and  », in the region 

described, subject to suitable boundary conditions   (discussed belo., 

To estimate, .e Imagine the calculation done by llnlte-dmerence methods 

l. dl dimensions,     „f spectral methods are used,  a rule ol thumb might 

be tha. the number ot modes In a given direction be -,l/2 , 1/3, „ the 

number ol grid points.     ,. the x.dlrt.ctlon .e .^ ^ ^^ _ ^^ 

of the order   ISX^.     Assuming that this is adeauately resolved by 8 

points per .avelength .e have southing l.ke 160 points in tbe .-direction- 

I.e.,  in the notation belo.,  L - 160.    m tbe z-dlrectlon .e have a 

distance of only one perturbation .avelength,  but to have a chance of 

describing tbe variation near breakden we need a fine resolution.    A 
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guess is 16 points in this direction (N = 16).  In the 6-direction we 

have a total distance 26, but as we have seen in the region 0 i y < 0.26, 

there are very rapid variations.  Hence, with finite-difference method» 

one would use either some coordinate mapping or a varying grid size. 

Assuming ehe  latter, one might use of the order of 20 points for the 

first 0.36 and 20 irore for the remainder—i .e. , of the order of 40 grid 

points.  The sizes of the time steps are essentially determined by 

stability requirements—i.e., 

vAt < Ar 

where v is some appropriate velocity and Lr  is some mesh spacing.  Since 

U is the largest velocity and it is in the x-direction, a reasonable 
00 

criterion (Grosch, 1974) might be 

With the numbers suggested above, this is 

0.375 -4 
At <  • 2.5 X 10 

~        3 
1.5 X 10 

-3 
For T = 1/150 c/s = 6.7 X io~ , this implies of the order of 30 time 

steps per cycle and ♦hexefore a number of time steps Nt ~ 300 to 500. 

Computer requirements based on these numbers are discussed below, 

First, however, we include a few caveats. 

A.   Boundary Conditions 

A well posed problem for solutions of Eqs. (1) and (2) would be 

one in which the initial velocity is prescribed everywhere within the 

region described and the velocity is given everywhere on the boundary 
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for all time (subject to j^n • u ds = 0).  Unfortunately we do not know 

this Information.  At y = 0 we do.  There all components of the velocity 

are zero.  At y = 26 it is clearly correct to a very high degree of ap- 

proximation to take the velocity as that of the free stream.  At the 

upstream edge ol our region it is reas-jiiafcle to assume that the velocity 

is of the Blasius form plus whatever p-M turbation one might want to put 

in.  In the spanwise direction a periodicity requirement is reasonable. 

What we do not know is the velocity at t) e downstream edge of our region. 

Two somewhat ad hoc suggestions have been made.  Grosch (1974) suggests 

"extrapolating" from the velocity inside.  If L is the downstream edge 

of the region, this formally is of the fovm 

L 

du 
0 dx 

I    Ok 

0 

ua.y.z.t) - j  u(x,y,z,t) g(x) dx ♦    |H (x.y.z.t) h(x] 

In some sense this may be regarded as a kind of radiation condition, 

which might indeed be reasonable.  How well the actual choice made of 

g(x) and h(x) approximates such a condition is not clear.  Also, there 

is an uncomfortable situation in that the pressure at x = L is calculated 

from bu/bt,  while to advance forward in time du/dt is calculated using 

the resulting p.  The possibility of an instability occurs. 

Orszag (1974) proceeds by dropping certain terms as small.  With the 

emasculated equations he demonstrates uniqueness if at all boum'ary 

points either P or y . n is given as well as y for points such that 

~ * "out * 0'  (Note:  this demonstration involves an additional, but 

reasonable, approximation.)  The difficulties here are: 

(1) We do not know p or y . n on the downstream boundary. 

(2) We do not know y so that we cannot even determine when 
v . n   < 0. 

~out 

(3) The approximations involved need to be Justified.  (In 

fairness it must be noted that Orszag has recently 
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suggested s. me  modified boundary conditions  about  which 
we have  insafficient   information to permit   making  an 
evaluation.) 

We would   lixe  to suggest  that   results obtained will  be  ratl.or in- 

sensitive  to the choice of  downstream boundary conditions.     There are  two 

arguments: 

(1)     For Tollmlen-Schlichting waves  the group velocity   (c  ) 
is  of order  l/3Uro.     Here then cg ~ 500 cm/s.     Then to 
travel a  distance of  the order of  50 cm from the ribbon 
to the downstream edge  requires ~ 1/10 s,  which  is 
approximately  15  periods of oscillations,  and one might 
not  even follow the  developments  much further  in time. 

to (2) The essential use of the velocity on the boundary is 

compute the pressure within our region.  This can be 

obtained by taking a special solution of the Poisson 

equation and adding to it a solution of Laplace's 
equation 

V P = 0 

chosen to satisfy the boundary condition. If the y 

variation of the boundary condition is ~ eiky, then 
the fall-off in the x direction is: 

? ~ P e  ' 
o 

Now a reasonable guess for the y variation is k26 ~ 2rt. 

(Remark:  We are thinking of deviations from the Blasius 

profile,  /or the latter, of course, P is independent 

of y.)  This suggests, then, that the boundary conditions 

imposed at the downstream edge will have little effect 

a few wavelengths upstream.  It is for this reason that 

we have suggested that the downstream edge of the calcu- 

lation region be some distance beyond where we hope to 
find a turbulent transition. 

A further argument that suggests things are insensitive to the down- 

stream boundary conditions is found by noting tl at the velocities (phase 

and group) of the Tollmein-Schlichting waves are usually small (~ 1/3) 

/ 
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compared to  the  free-stream velocity.     This suggests  that  any  such 

disturbance will  be  convected downstream and have  little effect  upstream. 

In Appendix C we give a simple model  for which the arguments   for 

exponential  fall-off and downsitream convection are verified in detail. 

However,   it  is obvious  that   none of  the above arguments  are  rigorous 

It   is  essential that whatever  ooundary  conditions  are used should be 

varied   (within reasonable  limits)   to see how  far upstream we  need  to be 

in order  to have  confidence  that   the  results  are  not artifacts   caused by 

the  assumptions  made. 

B. Calculations at Breukdown 

As we have noted, there comes a poirt where the boundary layer is so 

modified by the nonlinear wave interactions that it becomes strong?y un- 

stable.  At this point high-frequency oscillations suddenly appear.  In 

model calculations the instabilities grow by orders of magnitude in a 

fraction (~ 1/10) of the primary period.  The scheme described above will 

not be able to follow such rapid variations.  At best, a large irregular 

change in velocities between two successive time steps might be found. 

However, even this may not occur—the large space and time differences 

may average out such irregularities.  One approach to proceeding further 

is suggested by the fact that breakdown (Klebanoff et al., 1961) appears 

to occur at very localized points.  Hence, we can ;.top the calculation 

when at some x,z there is a profile that according to linear stability 

theory is highly unstable.  Then we consider only a small region in the 

vicinity of this point.  For this region we introduce a much smaller 

space-time mesh and then integrate the Navier-Stokes equation with initial 

conditions obtained from the previous calculation. 
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Ill  COMPUTER REQUIREMENTS 

A.   Introduction 

The basic problem under consideration is that of flow over a flat 

plate as illustrated in Figvre 6.  L, M, and N are the numbers of mesh 

V  (NORMAL  TO   PLATE), 
M=  32-64 

FLOW 

z  (SPAN  DIRECTION),  N- 8-16 

x  (FLOW  OIRECTIONI, 

L-  128-256 

FLAT   PLATE OF   INFINITE 
SPAN   IN (x, zl   PLANE 

FIGURE 6      GEOMETRY OF  FLAT-PLATE NAVIER-STOKES PROBLEM 

I 
points  in the x,   y,  and z directions at which one  calculates  the  flow 

variables  v  and P.     Two approaches  to  the  solution of  the Navier-Stokes 

equations on digital  computers are consideied here:     the finite-difference 

scheme  of  Dr.   Chester Grosch,   and  the  spectral  method of  Dr.   Steve Orszag. 

We  have  examined  the  finite-difference method  In considerable  detail 

with  the help of  Dr.   Grosch,   but   the  spectral   method has  proved  more 

difficult  to investigate,  as noted below.     The objective of  this  section 

is  to make some computer-run-time estimates  for both methods on three- 

dimensional  problems of interest.     The results  should not be taken as  a 
/ 
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comparison of the two methods (as we discuss below), but rather as an 

indication of the computer run time and therefore cost that one can 

expect on optimized "production runs" for useful prrblems. 

B.  Finite-Difference Method 

The finite-difference method for flow over a flat plate in two di- 

mensions (x,y) is discussed in detail by Grosch (1974).  The method is 

fairly easily generalized to three dimensions.  The basic changes are 

2 
that the Poisson equation for the pressure V P-Q = 0 must be solved in 

three dimensions and that three components of v are required, thus 

complicating the finite-difference equations.  The Poisson equation is 

solved by taking a two-dimensional Fourier transform in the (x,z) plane 

for each of the M values of y in the mesh. Me   then solve (LN) tri- 

diagonal equation systems—i.e., one system for each mesh point in the 

(x,z) plane.  This solution yields the Fourier components of P for each 

plane perpendicular to the y axis.  An inverse Fourier transfrom then 

yields P.  A set of three finite-difference equations yields the three 

components of v and the loop is completed.  Table 1 summarizes the 

operations required and the total number of operations per time step. 

Multiplying the terms in Table 1 by their appropriate computation times 

yields the total compute: time (AT ) per calculation time step: 
f d 

AT      =« LMN it   (95 +  3   log  LN)   +  t   (81  +  2   log  LN)   +  28t   I (8 
f d (  a 2 m 2 s f 

) 

where  t   ,   t   ,  and t    are the  particular computer's  add,   multiply,  and 
am s 

memory access  times. 

C.       Spectral Method 

It  is  impossible to determine exactly how Orszag  implemented his 

calculation.     If  his  report   (Orszag,   1974)  is examined it  will  be 

( 

20 



(0 
u 

>>   V 

0     X 

11 M m 0) x 
M 

A 

5 

M s 

w 
u 

w 
E 
- — 
Q 
I 

B 

■ 
c 
l-l 
CO 

u 

:5 c 
0 
•H 
w c 

o 
II 

<y 

i 

a. 
N 

bfi 
c 

■H 
> 

pH 

e 
o 

3 
O 
l-l 
eg 
U 

0) E 
3 
t/l 
tn 
0) 

C 

■ 

t 

n 

§ 
1 in 0) ? ■ 
c 
1 § 3 

0) § 
■~ •H 0 1 •H 

+J •(-> 
r-t 

«i 

^ s S ^s 

4) SH 2 ■H 1—1 0 0 
t, ••-1 b£ >-^ 
l •rt 1 T3 
K cx •o 0) 0 

1 +J > a •H !fl rH 
«H E >. 0 

M 0 n «1 

U 
c 

O 

« 

E 
E 
o 
IB 
in 
C "—• 
0 ••-) 
U 

a 
h '—' 
4) 
•H      C 
h     fl 
a  a  m 

0     -H 
Q ^ 

1 0   - N     -M     S 

X 

CO 

c 
o 

I 
PH >i 
3 
U — 

rH 0 
■ 
U in 

Ü 0) 
e e 
I a 
0) E 

<H Q 
<H U 
■H 
Q    J 

I 0) 
0) ~ 

I 

N 

0 

+ 

X 

N ■ 
0 

CO 

+ 
in 
05 

a o 

I 

I 
in 
e 
o 

a 
u 
0) a o 

5 

U 

o 
u 
o 

u 

CJ 

0) 
u 
E 
3 

21 



noticed that no detailed discussion is given about the solution technique, 

Verbal conversations with Orszag helped some, but it is difficult to 

judge the validity and efficiency of the calculations.  In at least one 

case, the report contains conflicting statements concerning the step- 

integration method employed.  '"Adams-Bashforth" is indicated on p. 31, 

but "Runge-Kutta" is used in the actual code.  Since the computer code 

still contains "bugs," it is not clear just how valuable the results of 

the study were. Although it is not evident from the report, it is abso- 

lutely true that Orszag has made significant contributions to the field. 

The general method can be described as a part spectral method and 

part finite-difference method.  According to Orszag, 20 two-dimensional 

real FFTs (fast Fourier transforms) and two one-dimensional FFTs are 

required for each plane normal ,o the flow per time step, and the time 

spent in FFTs is 60% of the total computer run time.  Also, he stated 

that it took 9 seconds per time step for L = 128, M = 8, and N = 64. 

Thus, a general formula for estimating the run time on a CDC-7600 can 

be derived as follows. 

First, let us consider FFT operations: 

(1)  Complex transform in one dimension requires 

(i) log  (N) butterflies with 

•1 multiplies + 2 additions/rotation + 4 additions/butterfly 

= multiplies + 6 additions for each butterfly yielding 

3N log (N) additions and 

2N log. (N) multiplications in all. 

(2)  Real transform in one dimension requires 

+ 1  butterflies or (f)h (5) 
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N   log, (1)-]-" log    N multiplications  and 

(?) log N additions. 

(3;  2-D complex transform (M X N) requires 

M[- log (N)  butterflies (1-D Transforms) 
2   2 

followed by 

N - log M 
2   2 

NM 

2 

butterflies (1-D Transforms) 

log M + log N] = NM log2 MN butterflies 

or 

|4 multiplication 
NM log2 (MN) X |6 addition 

(4 MN log2 (MN) multiplications 
= je MN log2 (MN) addition. 

(4)  2-D real transform (M X N) requires 

l4 
log. (5) + i 

Al     l0g2 

butterflies followed by 

butterflies (MUi 

■ *! h (")+•*. (i) * 21 - (^io^,,,, "^ rflies 
or 

MN  log« MN multiplies 

— log„ MN additions 

Orszag has estimated that the   (20L)  two-dimensional real FfTs  and 

(St)  one-dimensional FFTs  require about  60% of his  computing time.     For 

the 7600.  multiplication is  about  twice the time of an addition.     Define 

one operation as an addition;   hence,  multiplication is equivalent  to two 

operations and a butterfly is  14 operations: 
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2L  (ID FFTs) m 14L [(?)  l0e2M +  (5)  l0SN 

20L  (2D FFTs) « 20 X  14L |^j  log^MN)     operatl 

operations 

ous 

The total run time (ATg) per computation time step on the 7600 Is then 

AT 
(0.6/ 

(14L) 5 MN 

AT 

log2(MN) ♦ (5j log2M . (Hj ,^1 

'I •K'L [ll7 MN log2(MN) 4. 5.8 M log M + 5.8 N log 

where K' Is a calibration factor (equal to the add xlme In seconds). 

Now, from Orszag's experience on the 7600 we know that AT « 9s for L = 
s 

128, M = 8, and N = 64.  Substituting this into the above equation yields 

K' « 1.3 X 10  , so the effective add time (t ) is about one us. 

Now, for a single-calculation time stop we will allow 60% of the 

run time to the 20L two-dimensional FFTs-l.e., neglecting the two one- 

dimensional FFTs, we allow 30% of the run time to the solution of tri- 

diagonal equation systems, and 10% of the run time to i4 memory accesses 

per mesh point.  So from Orszag's experience we can derive an approxi- 

mate formula giving A*, the computing time required for a single time 

step in the Navier-Stokes calculation: 

AT, • LMNta (45 log MN) + LMNt  (30 log^MN) + 14 LMNt (9) 

where L,  M,  and N are the numbers of mesh  points  in the x   (flow), 

y  (normal),  and z  (span)  directions;   and t   ,  t   ,  and t    are  the cc 
am s 

effective addition,  multiplication,  and memory access  times. 
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D.   Comparison of Computing Time Estimates 

The computing-time estimates (per time step) for the finite difference 

and spectral methods discussed above are given by Eqs. (8) and (9).  The 

particular computer's effective add, multiply, and memory access times 

are denoted by t , t , and t .  Two features are common to both methods: 
am      s 

(1) The computing time increases approximately linearly 

with the number of mesh points. 

(2) The multiplication terms are more heavily weighted 
than the addition terms when one considers that 
multiply times are typically about twice as long as 

add times. 

However, there are also some interesting differences.  The finite- 

difference method is more sensitive to memory access time and therefore 

will fare relatively worse or. a memory-limited machine.  For a typical 

application the spectral method is most heavily governed by the multi- 

plication time, while the finite-difference method is about equally de- 

pendent on the multiplication and memory access times. 

The computing-time estimates given below should be qualil.led on 

several points.  First, the estimaces are intended only as a very rough 

gui.de to the sort of computing times one might expect on rather highly 

optimized "production runs." We have used effective values of t^, t^, 

and t  derived from the experience of Dr. Steve Orszag on the CDC 7600 
s 

computer where he has taken care to reduce the run time by optimization 

and the use of many assembly-language-coded subroutines.  The finite- 

difference method of   . Chester Grosch has never been optimized for the 

7600, so the figures below are in a sense a rough projection of what the 

finite-difference method could do if optimized in a similar fashion. 

Spectral methods are thought to give better resolution of the hydrodynamic 

variables for a given mesh size.     Thus, for calculations of a given 

accuracy, the number of mesh points required could be less for the spectral 
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method. Finally, the algorithm for the finite-difference method has been 

examined in more detail than has that for the spectral method.  Given 

these uncertainties, one should regard the estimates below as only rough 

indications of the range of computing time required, and not as a com- 

parison of the two methods. 

For problems of interest the numbers of mesh points required in the 

x, y, and z directions fall in the following ranges:  L ~ 128-25Ö, M - 

32-64, and N - 8-16.  In Table 2 we have estimated the run times for 

maximum (~ 250,000 mesh points), minimum (~ 33,000), and typical (~ 66.000) 

problems.  AT, the computer time per calculation time step is calculated 

from Eqs. (8) and (9) using "effective" values of t ~ 130 ns, t -  260 ns 
am' 

and ts - 1 us.  These effective values are derived from the experience 

of Dr. Steve Orszag on the CDC 7600 computer, but we have used them for 

estimating both AT^ and AT^. Typically, 300 to 500 time steps are re- 

quired to carry a calculation to the transition stage, so we have taken 

T = 400 AT as the total run time. 

Table 2 

ESTIMATED COMPUTING TIME FOR SPECTRAL 

AND FINITE-DIFFERENCE METHODS 

Problem L M N LMN 
AT 

fd 
AT 

s 
T 
fd 

T 
s 

Maximum 256 64 16 262,144 20 s 40 s 2.0 hr 4.0 hr 

Minimum 128 32 8 32,768 2 s 4 s 0.2 hr 0.5 hr 

Typical 128 64 8 65,536 5 s 8 s 0.5 hr 0.9 hr 

Note:  L = Along flow; M ^ Normal to flow; N = Along spsn. 
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Again we should emphasize that these figures should not be taken as 

a comparison of the fInlte-dlfference and spectral methods-they are too 

rough ne  main ,olnt here Is that for suitably optimized codes the run 

times are not unacceptably lor*.  Given a typical cost of ~ $700 per hour 

lor a 7600. the production run cost for the "typlcl" problem Is about 

$500  Optimization and assembly language coding (assumed here), which 

take advantage of the architecture of a given computer, can give a time 

reduction as large as a factor of five.  So one could expect » unopti- 

runs." 

^ 
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IV WAKE OF A FLAT PLATE 

A prob:em closely related to the above transition in the boundary 

layer of a flat plate is that o.'' transition in the wake of a flat plate. 

Some reasons for considering this problem next are: 

(1) The calculations are very similar to the previous one. 

A suitable program for the flat-plate calculation 

would require modest changes in order to treat the wake. 

(2) Detailed experimental information is available for 

comparison (for example, see Sato and Kuriki, 1961). 

(3) The nature of the transition is rather gentle.  In 

contrast to many other turbulent transitions, this 

one is not achieved by the development of sharp 

bursts. Accordingly, it may be expected that 

transition can be followed numerier tly very far. 

Drawbacks to this calculation are: 

(1) As previously, the downstream boundary conditions 

are ambiguous. 

(2) The applications to practical design are somewhat 

indirect, 

Our understanding of this transition runs as follows:  The Goldstein 

(laminar) wake (Goldstein, 1933) is unstable according to two-dimensional 

linear stability theory.  Thus a small perturbation is amplified when 

one proceeds downstream.  Eventually nonlinear effects take over.  (The 

growth rate is not the predicted exponential, and harmonics of the in- 

duced perturbations appear.) Further downstream a distinct three- 

dimensional pattern appears and the flow becomes more and more irregular. 

However, we emphasize that no sharp bursts or spikes appear.  This should 

be an ideal problem for numerical simulation. 

Preceding page blank 
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Since, as Indicated, the problem is so much like the flat-plate 

transition, computing requirements will also be pretty much the same, 

\ 
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V WEDGE FLOWS 

TTie numerical simulation of transition in wedge flows would be of 

considerable interest.  The reasons for this are: 

(1) The calculation is very similar to the flat plate. 
[Indeed, one code (Grosch, 1974) has been written 
to include this possibility.] The essential reason 
for this is that the boundary-layer equations for 
the flat plate are Just a special case of that for 
the wedge.  Thus, if ßn is the included angle, the 
potential flow is 

U(x) = U x 
o 

■ 
(10) 

wnere 

m = ß/{2 - S) 

and the boundary layer is described by the equa'lons 
(Schlichting, 1960, p. 143): 

u = U x f'(T]) 
o 

m + 1  " m^  I    m - 1  , ■ "M—^— vU x    f +   f ' 
V  2    o        m + 1      ' 

(11) 

n U 

.     m + 1 o  m - 
M = y A\—  x   

V  2  v     2 (12) 

in 
+ ff" + ß[l - (f') /x2. 

= 0 (13) 

subject to f(0) = f'(0) = 0 f'^) = 1 

We note that with ß = 0 this is just our flat-plate 
equation.  (The factor-of-2 difference occurring 
between Eqs. (5) and (13) is due to a different 
normalization.) 
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(2) By varying the parameter ß we can study the effects of 

pressure gradient.  Thus, with ß > 0 we have accelerated 

flow (and therefore greater stability), while for ß < 0 

we have deceleration (and more instability). 

(3) With ß = 1/2 we have the equations of the boundary layer 

for a rotationally symmetric flow. 

(4) Measurements of the boundary-layer transition on a flat 

plate with mild, favorable pressure gradients (DeMetz, 

1974) are available for comparison with the calculations. 

As we have indicated, the computing requirements are as for the 

flat-plate case. 

I 
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VI  POSSIBLE FUTURE PROBLEMS 

» 

There seem to be many different mechanisms for transition to turbu- 

lence.  For an understanding of these mechanisms, it would be desirable 

to do numerical simulation in relatively pure situations.  Here we give 

a list of some of these and an indication of why they are of interest. 

(Since the calculations are of a somewhat different nature than those 

described above and have less direct practical application, we think 

they should be done at some later date.  Accordingly, we have not made 

any computing estimates.  However, it seems that they are problems of a 

magnitude similar to that of the problems discussed above—but computa- 

tion would probably require new codes.) 

A.   Couette Flow 

This flow between concentric rotating cylinders is, of course, 

classic.  Extremely good experimental results are available (Donnelly, 

1963; Coles, 1965).  From a theoretical standpoint this is a very clean 

problem.  The ambiguity of the boundary conditions disappears.  In the 

radial direction we have well defined boundary conditions on the cylinders. 

Azimuthally we have periodicity.  In the longitudinal direction periodicity 

is a reasonable requirement. 

When the inner cylinder rotates more rapidly, there is seen experi- 

mentally a rich set of phenomena (Coles, 1965). When the rotation rates 

are changed we pass from the original laminar state through a multitude 

of different states with well organized How patterns. In addition, 

hysteresis effects manifest themselves- i.e., the state achieved depends 

on the past history. It would be fascinating to reproduce these effects 

by numerical simulation and it should be possible to do so. 
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Lin's calculation 
Lock's calculation 

ffe,/J 

FIGURE 7      THE FORM OF THE NEUTRAL CURVE IN THE (k.Re) 
PLANE FOR A PLANE POISEUILLE  FLOW.    Source. 
Monin and Yaglom (1971). 

2.       In Pipes 

This  is  a particularly interesting  situation since,  in contrast 

to all other problems we have discussed,   the  flow is  apparently stable 

with respect  to infinitesimal disturbances.     We  say apparently since: 

(1) Extensive theoretical efforts using  linear- 
stability theory have failed to  find any 
unstable modes. 

(2) Experimentally the transition Reynolds'   number 
seems  to go ever higher,  the  lower  the ambient 
disturbance level.     (Of  course,   neither of these 
is  a  proof.) 

At  least  two  ideas as to how the observed turbulence originates 

have been suggested.     One is that there is a  finite amplitude instability. 

If this is the  case,  numerical simulation seems  to be of  little value. 

The observed transition in terms of turbulent  bursts  suggests that  in a 

calculation we would either be in a  laminar region  (of  little interest), 

or in a turbulent  region where we cannot  resolve the flow.    The second 

suggestion  (Smith,   1960)  is that turbulence originates  in the inlet 

region before the  full Poiseuille profile  develops.     If this picture is 

correct,  the numerical calculations would be similar to those for the 
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VII  ON CONTROLLING THE TRANSITION TO TURBULENCE 

The development of a three-dimensional numerical simulation code 

will give us a powerful new tool for assessing methods to control the 

transition to turbulence on a wide range of bodies—i.e., not just bodies 

of revolution and two-dimensional airfoils.  We use the phrase "controlling 

the transition" in a general sense so that studies of effects that sub- 

stantially advance the transition (e.g., excessive surface roughness) 

are also included in the scope of the investigations. 

Let us first turn to ways to calculate and control linear Tollmein- 

Schlichting Instabilities.  Here a number of methods have already been 

suggested:  (1) compliant surfaces, (2) changing the equation at state 

(e.g., adding heat, polymers, etc.), (3) suction, and (4) control of the 

pressure gradient.  Except for pressure gradients, which have enjoyed 

wide use, the optimum ways to use Methods 1 through 3 remain to be devised. 

Furthermore, even though one is dealing with linear-stability problems, 

there are important nonlinear effects in the ways the laminar boundary 

layer and potential flow patterns are altered by the measures used to 

delay the transition.  For example, adding heat changes the viscosity, 

and the viscosity gradient in turn alters the laminar boundary layer in 

a direction toward stability.  Clearly, heat added at one location on the 

surface of a body will diffuse across the boundary layer and have a much 

smaller effect downstream.  Thus the combination of heat transport via 

diffusion and convection, coupled with the linear-instability mechanisms, 

becomes a complicated problem that is probably most easily solved by a 

direct simulation rather than linear-stability analysis.  The present codes 

must be generalized to include heat transport, of course. 
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The  second-class methods  to alter the   transition  involve  nonlinear 

changes   in  the  flow within  the boundary  layer—e.g.,   nonparallel  flows, 

surface  roughness,   and abrupt  changes   in the body  shape.     As examples 

we can cite  the early transition  to turbulence  that occurs on  some   rough, 

blunt  bodies  and  the  use  of  small   span-wise  or flow-wise grooves  to 

stabilize   the  Tollmein-Schlichtlng waves.     Also,   swept-wing airfoils 

have boundary  layers with nonparallel  flow.     The  numerical  simulation 

approach gives us  a   single  technique  that  can handle  this wide  variety 

of problems. 

Overall,  our studies  indicate  that numerical  simulation  techniques 

have  sufficient  resolution to accurately predict  transition and that  they 

can be  adopted  to circumstances where  the  laminar boundary  layers differ 

appreciably   from  the  simple  parallel-flow ones now commonly used. 

Initial  studies of  such  phenomena would take a  year to complete,  and a 

comprehensive  program would  require   three   to five years. 

I 

/ 
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VIII     THE   IMPACT OF NUMERICAL  SIMULATION OF TURBULENCE 

Let us  suppose  that  three-dimensional  numerical  simulation techniques 

have   successfully   reproduced many of   the   phenomena  that  occur in flat- 

plate  flows.     What  comprises the next generation of problems both in the 

practical  and  research areas? 

An  important  class of practical  problems concerns  the  simulation of 

the  transition  to  turbulence   in configurations  where   linear-stability 

analysis  fails or is excessively complicated due  to geometry.    These 

problems  will   require   the  development  of  a  more  flexible  code  that  can 

handle  both  fairly  general  boundary  conditions   (e.g.,   surfaces  rough  on 

the  scale  of  the boundary  layer)  and heat   transport.     Fortunately,   almost 

every body can be  represented by a  sequence of  simulations each of which 

represents a  small portion of the  surface. 

The   impact  of  the  numerical  simulation of turbulence  is that  It will 

be a  single  technique  that will handle many problems not  only of a  linear- 

stability  type but also  inherently nonlinear,   such as finite-amplitude 

surface  roughness.     The ability  to compute  the combined effects of both 

linear and nonlinear processes for initiating transition  is a  strength 

unique  to  the  numerical  simulation approach. 

The  next generation of  research problems  should be  chosen to help 

us understand  how well   the   simulation code   represents   fully  developed 

turbulence.     Estimates clearly indicate   that  the  inertial  range will  be 

described poorly  if at  all.     For example,   high-frequency bursts of 

turbulence may not occur in the correct  frequency range.     On the other 

hand,  many of   the overall properties of  a  turbulent boundary  layer  (such 

as drag,   heat  transport,  etc.)  may be quite well  represented since  they 
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depend much more  on  the  larger,  energy-containing eddies.     Therefore, 

there exists  a  strong possibility  that numerical  bimulation may produce 

a useful enough representation of  the  turbulent boundary  layer so that 

the effect of  body  shape,  etc.,   on the transport properties of  the  layer 

can be calculated—at   least   in a  semi-quantitative manner.     Such a pro- 

gram would require  codes with flexible boundary  conditions  and carefully 

thought out  sub-grid closure  schemes.     Its  impact would be  to produce a 

first-principles  calculation of  the arbitrary coefficients  that occur in 

turbulent-boundary-ltyer theory,   and,  more   importantly,   to  see  if  there 

are circumstances  in which  these  coefficients  vary by a  significant 

amount. 

/ 
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IX  RECOMMENDATIONS 

A program of numerical simulation that could be expected to have a 

significant impact on our knowledge of, and ability to predict, the 

transition from laminar to turbulent flow might consist of the following: 

(1) 

(2) 

(3) 

(4) 

A commitment to the program for a significant length of 

time.  Crash programs seem to be counterproductive.  Four 
to five years is a reasonable time scale. 

An aspect of competition.  There should be at least 

two groups performing the calculations.  In the beginning 

they should be calculating as closely as possible the 

same problem, and with the same parameters used in the 

experiments.  Later, when confidence has been obtained 

the groups could begin dividing up the problems suggested. 

It is reasonable that the groups use somewhat different 

computation schemes.  A number of such schemes suggest 

themselves.  It would be efficient to use the program 

to evaluate their relative merits.  The schemes used to 

date~i.e., those of Grosch and Orszag—seem sufficiently 
representative. 

A small advisory panel.  This might consist of a group 

(~ 4) of active workers ^.n the field.  The members might 

be an experimentalist, a theoretical hydrodynamicist, a 

computer expert, and a numerical analyst.  They would 

be expected to work closely with the computing groups. 

Fopefully, they would spot difficulties or uncertainties 

in given calculations and direct the program (i.e., while 

we have given a tentative ordering of problems to be 

done, it would be expected that the advisors would con- 

tinually reassess the next stages of the program in the 
light of what had been accomplished). 

An expenditure of the order of $200,000 per year.  This 

mighi produce between 30 and 100 runs on one of the 

problems outlined above.  We envisage a few man-years 

of effort and computation on a computer comparable to 

the 7600.  This sum may or may not include support for 

experimental work that might be found advisable. 
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Appendix A 

LINEAR-STABILITY ANALYSIS AS  A PRACTICAL TOOL 

On a properly designed and fabricated body,   the  transition from 

laminar to turbulent boundary  layers occurs through linear Instabilities 

whereby  free-stream fluctuations In velocity,  pressure,   and  temperature 

enter the boundary layer and  are  spatially amplified via  the Tollmeln- 

Schllchtlng waves.    A sufficiently large amplification  results  In non- 

linear effects  that  Initiate  the  transition to turbulence.     The  transition 

prediction method of A.M.O.   Smith and his colleagues  Is  the only predic- 

tion method that now makes use of  the  spatial amplification concept~a 

process that must occur physically.     Indeed,  Smith's e      method has been 

the most  successful predictor  In ARPA's program as well  as  In predicting 

transition for the various airfoils. 

But Smith's method has not  received wide use because  the  spatial 

amplification rates are  derived from the  solution to an eigenvalue problem 

involving 4th-order differential equations.     The  solution to these equa- 

tions,  which must be done by computer for an arbitrary  laminar boundary 

layer,  are conceptually  straightforward but quite  laborious  In practict. 

A well documented and widely available computer program  is called for. 

We  therefore recommend that ARPA fund an effort  to produce a computer 

program  (most  likely  in TORTRAN)   that will run on a  number of  the more 

generally available  scientific computers.    The core of  the program will 

be  the  4th-order eigenvalue  solver.    Auxiliary parts will  Integrate  the 

spatial  amplification  factor along the body,  and calculate the  laminar 

boundary  layer,  potential  flow, etc. 
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The wide availability of such a program would allow body designers 

to test proposed bodies against Smith's criterion on an in-house basis, 

hopefully allowing a more  rapid convergence  to optimum designs. 

The need for this computer program is an example  of  a  situation  in 

which an increased understanding of  the basic physics has  led to more 

sophisticated design criteria  that can be  implemented only by a computer 

program.     Of  course,   some  generality  is  lost  from the  older,   more  gross 

engineering criteria.     But,   it   is only  through such a  program that  the 

effects of  the details of body shape on the  transition  to turbulence can 

be quickly evaluated. 

In closing  this  section,   we  should remind the  reader that transition 

can occur through channels  other than linear Tollmein-Scnlichtir.g ampli- 

fication.     High levels of  free-stream turbulence,  excessive  surface 

roughness,  and poor body  fabrication are examples.     The  spatial  amplifi- 

cation method often does not. work in such cases.     But  it does have a good 

record of  success in  those  projects where designers have  taken the 

trouble  to eliminate  these  other sources of  turbulence. 
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Appendix B 

REMARKS ON A  SPECIALIZED NAVIER-STOKES COMPUTER 

1.   Introduction 

Reference 2 has considered the question of what can be accomplished 

with modern machines such as the ILLIAC IV, IBM-370/195, and CDC-7600. 

The purpose of this appendix Is to consider the wisdom of designing a 

special computer that could greatly exceed the capabilities of the current 

machines In solving only a specialized class of problems—1 o,, the 

Navler-Stokes equations, and similar partial differential equations 

arising in plasma physics, hydrodynamics, weather prediction, geology, 

etc. 

a.   An Interesting Calculation 

An interesting numerical simulation well beyond the capabilities 

of current machines is the fully resolved three-dimensional turbulent 
4 

fluid flow for a Reynolds number of 10 ,  This requires a grid of 
.4 9/4    9 
(10 )   =10 mesh points for each point in time.  Each mesh point must 

represent the velocity and pressure fields so that three velocities and 

one pressure term are required at least for the present Instant in time 

and the immediate past.  The past values are needed in order to mirch 
Q 

forward  in time with a  numerical   integration procedure.     Thus 8 X 10 

scalar variables are  required,   and about   (10 )     in 10   == 101     arithmetic 

operations are required.     A more detailed count of arithmetic operat-ons 

of  an efficient  finite differencing scheme  for 10    grid points  Indicated 

that 5 X  io      additions and 3 X  10      multiplications are  needed ^er time 
12 

step.     A rough guess  ID that  about  10      instructions would be  required 

Preceding page blank 
49 

am Mn^^^^m 



12 
to  implement  these operations  so that about 2 X  10      read accesses from 

storage  are  required for each  simulated time  step.     These parameters are 

summarized  in Table B-l. 

Table  B-l 

PARAMETERS  OF AN   INTERESTING TURBULENCE  CALCULATION 

Three-Dimensional Geometry 

Reynolds  number: 

Resolution: 

Memory  size: 

Arithmetic operations 
(finite-difference method) 

Additions: 

Multiplications: 

R =  10^ 

109  spatial mesh points per time  step 

10       sealer variables 

5 X   10      per time  step 

3 X   10      per time  step 

12 Instruction execution  rate:     10iÄ  per time   step 

Memory bandwidth: 2 X  1012  read accesses per time   step 

b.       Current General Purpose  Computers 

Table B-2   lists  some   critical  state-of-the-art parameters of 

modern computers.     Note  that with a  simple  array  system of  secondary- 

storage access  systems,  more  than 2 X  1010 X  (2 X  IQ )"    =10     s would 

be   required Just  to update each grid point  for each simulated  time  step. 

Parallel access to the  secondary  storage will  reduce this  time,   however. 

The  instruction execution time  for a very-high-performance  single CPU 
Q 9 

(control processing unit)   is at best 25 X  10'    s,   so that 25 X  10   X 

2 X  1012  = 5 X  10    s or about   14 hours per simulated time   step would be 
9 

required.     Thus  it  seems  infeasible  to simulate  10    grid points  since / 
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Table  ß-2 

MAXIMUM-PERFORMANCE  PARAMETERS 

FOR A    IODERN  SINGLE,   PIPELINED AND CACHE  CPU COMPUTER 

,-.11 --i.e.,      I Direct-access  secondary-storage  capacity:       10      bits maximum 
about 2 X  ICr variables 

Direct-access  secondary-storage bi >dwidth:     107 bits/s maximum--i.e., 
about 2 X  106  variables/s 

Arithmetic operation  time: 

Cache memory access  time: 

25 X   10"9  s minimum   (pipe- 

lined) 

25 X   10~9  s minimum 

many time  steps would be  required  in a practical problem.     Clearly,   the 

usual  von Neumann computer architecture cannot be used,  and other choices 

should be  considered. 

c,        ILLIAC   IV 

The ILLIAC IV (Bell and Newell, 1&71) is a radical departure 

from classical computer architf -.tur^.  It was designed for array-type 

calculations.  The critical parameters of the ILLIAC IV are given in 

ble B-3.  The most limiting facto, is the limited secondary storage of 

only 109 bits as compared to the 10  bits that are required. Even If 

the ILLIAC should be suprlemented with large disc drives, the bandwidth 
9 10 

to secondary storage would be less than 10 bits/s  as compared to 60 X 10 

bits needed for one simulated time step,.  It would take more thar 60 X 

10'9 = 600 S  just to read In data fo- one simulated time step.  Calcula- 

tions would require about 2 X 10^ X 2 X 240 X lo"9 + 64 = 15,000 s per 

s<T.ulated time step, if all input-output and grid-point data interchanges 

are ignored.  Thus even an extensively enhanced ILLIAC IV cannuL oe us 

M 
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Table B-3 

ILLIAC IV PARAMETERS 

64 processing elements 

Add time (each element): 

Multiply time (each element); 

2048-64 words of 240-ns 

memory/element 

Secondary storage capacity: 

Secondary storage bandwidth; 

240 ns 

400 ns 

109 bits 

10 bits/s (to all elements in parallel) 

to attack this problem, and other types of computer structures need to 

be examined. 

2.   Computer Architecture for Array Calculations 

a.   Solution Methods 

Nonlinear partial differential equations can be solved by a 

variety of techniques such as finite difference, spectral, psuedospectr.. 1, 

and Monte Carlo methods.  A special computer designed for any one of these 

methods will not be optimal for any of the others.  Also, while it appea-s 

that finite-difference methods are the most flexible relative to bounJary 

complexity, etc., the pseudospectral methods are much better when regular 

surface boundaries exist.  Furthermore, integration algorithms are in a 

dynamic state of development and better algorithms aru quite likely to 

emerge in the near future.  Thus, only very flexible and general computer 

structures should be considered. 
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b.   Computing Requirements 

What are the common characteristics of a large class of non- 

linear partial differential equation solution methods? First of all, 

frr very arbitrary boundary conditions some finite-difference and suc- 

cessive over-rexaxation methods must be employed,  riowever, if well 

behaved boundaries (planes, spheres, cylinders, etc.) exist, then the 

pseudospectral methods offer large savings in computing effort.  In fact 
9 

it appears that the 10 grid problem will be attacked in the foreseeable 

future only by pseudospectral or other methods that ,ake advantage of 

particular features of a given problem.  Finite-difference and relaxation 

methods require only that information be passed between neighboring grid 

points.  The spectral techniques on the other hand need global informa- 

tion at every grid point in order to calculate a Fourier or other trans- 

form (Orszag, 1974).  However, a very large class of transforms can be 

implemented through the fast Fourier transform (FFT).  Thus the archi- 

tecture of the computer should be such that grid points can interchange 

information with their close neighbors and also be able to perform 3- 

dimensional FFTs on the quantities of the grid points. 

F-om Table B-l it is evident that to solve the Navier-Stokes 

equations, for a large number of grid points, about ten variables per 

grid and 1000 operations per grid point are required for each simulated 

time step.  More complicated problems involving compressible fluids, 

electromagnetic flells, etc., might double both ol  the quantities so that 

in designing a relati 'ely flexible computer, perhaps 32 variables per grid 

point should be selected and 2000 to 4000 operations per grid point per 

time step assumed.  If it is desired that a time step be simulated in 

about a second, then about 3200/32 = 100 operations per second are needed 

for every variable. 
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c.   Performance Tradeoffs 

Very fast pipelined logic (a high-performance processor) could 

perform about 2 X IQ7 operations per second while a slow serial processor 

3 
might only be able to do about 3 X 10 operations per second. 

For one second of execution time per simulated time step, 

2 X 10/2000 2: 10 grid points could be processed by a single high- 
4 

performance processor with (10 to 32) X 10 registers per processor 

(i.e., approximate 10 bytes).  However, an interconnected array of 

109 X 10 or 10 X 10 high-performance processors would be required to 

handle the 109 grid-point problems.  This approach seems to be far beyond 

near-term technology hence is therefore considered infeasible.  Even if 

the calculation time were increased considerably and the logic speeds 

could be greatly improved, an impossibly large array of very-high- 

performance computers would still be required.  In any case, the pro- 

cessors of such an array would be very similar in structure tc the present 

high-performance machines discussed earlier so that beyond creating 

special FFT hardware attachments to the usual sort of pipelined processor 

(or array processors for ILLIAC IV), it appears that little can be gained 

by a special computer architecture using high-performance operations. 

An interesting situation develops, if however, the low- 

performance serial organization is considered.  If one slow serial pro- 

cessor were "devoted" to one grid cell and hence 32 variables, the re- 

sulting computer structure would be a three-dimensional array of slow 

serial processors, each with about 32 registers, connections to its 

neighbors (six each), and connections to implement an PFT (see Appendix 

E for duration of the FFT) in three dimensions (six additional connections 

per cell). 

A more efficient arrangenent in terms of total number of inter- 
3 

connections is to use one processor for every (N ) grid points; for the 
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lowest-speed serial processor, this could require as long as ten seconds 

to simulate one time step.  This may very well be an optimal arrangement 

for a special-purpose computer devoted to solving hydrodynamic equations. 

As N is increased, the arrangement of cells is nut changed but a few 

more instructions per cell are required for individual grid-point selec- 

tion within a given cell.  Table 3-4 illustrates the possibilities for 

several values cf N.  It is significant to note that by 1980, it may be 

feasible to construct a computer to solve  the 10 grid problem for about 

the cost of the ILLIAC IV (in 1970 dollars). 

3.  Conclusions 

It can be concluded that: 

(1) Dircc'- numerical simulation of turbulence for most 
important and interesting problems cannot be accomplished 

with present-day computers or even with general-purpose 

computers proposed for the near fu'.u'-e.  Hence, many of 

these simulations will be impossible without siecial- 

purpose computers that have been custom designed to 

solve partial differential equations. 

(2) Algorithms for solving partial differential equations 

are in a dynamic state of development.  Thus any pro- 

posed special-purpose computer must be very flexible 

relative to solution method as well as to the kinds of 

problems it can handle.  In particular, it should be 

capable of finite-difference calculations and relaxation 

calculations as well as spectral and pseudo spectral 

calculations for sets oF  partial differential equations 
that arise in hydrodynamics, plasma physics, aerodynamics, 

global weather, etc.  Hence, each grid point must be 

able to exchange information with neighboring grid 

points and must be capable of in-place, three-dimensional 

fast Fourier transformation of the grid-point quantities. 

(3)  A special purpose very-high-performance computer could 

be organized for the 109-grid-polnt problem by using a 

large-variety of high-performance, expensive components. 

However, the many different types of components required 

and their diverse interconnections would not allow any I 
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regular construction pattern, so that the complexity 

would be overwhelmingly great.  Such a machine appears 

impractical for the near future (the next 10 to 15 years). 

(4) A cellular-array computer, composed of a single inexpensive 

general-purpose minicomputer driving a very large, 

regular array of identical cells of a single type, each 

cell of which represents one or more grid points, does 
o 

appear to be feasible for the 10 -grid-point problem 

by the early 1980s. 

(5) A cellular array of more modest size might be very 

effective for calculating some specialized problems 

in the transition to turbulence, plasma instability, 

etc.  hence, some smaller array may be worthwhile prior 

to the 1980s, when 1SF technological advancements 

will probably allow the construction of the large 

array for a cost that is not totally unreasonable. 

(6) A very modest investigation of the cellular-array 

computer appears to be justified, since many 

interesting questions must be answered before such 

a machine could be constructed. 

(7) Extensive simulation of the array machine should 

precede any commitment to hardware.  This could be 

accomplished by a continuing research program at 

modest cost. 

(8) The potential benefits of a powerful computer of the 

type proposed hero seem to be very great.  Some 

further investigation is certainly indicated. 
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Appendix C 

A MODEL TO  STUDY  DOWNSTREAM BOUNDARY CONDITIONS 

In the main text a number of arguments were given  to  suggest  that 

downstream boundary conditions cause  little effect  at  a  few-boundary- 

layer thickness upstream.     Here we give a  simple model  In which we can 

verify the  statements. 

We consider Couette flow between a stationary plate at y = 0 and a 

plate moving with velocity U in the x-directlon at position y = 6. The 

laminar solution of   the Navler-Stokes equations  is 

v = u   (y).   0,  0 
o 

where  u   (y)   =  Uy/6 
o 

(Thus we are approximating the Blasius-type profile by a straight line.) 

Further, we neglect viscosity and restrict ourselves to flow linearized 

around the laminar solution.  We wish to see how a disturbance at a point 

affects the flow upstream and downstream from that point.  Writing 

v = (u + u , v , 0) we have the equations 
~    oil 

a«, a» au 
"1       1     ' o 
  + u   + v   
at       o OX      i ay ay 

av au 
—i + u — = -apyay 
at       o ax i 

ax     ay 

Introducing a  stream function cp by 

Preceding page blank 61 

■M 



u     = *£ ,,--*■ 
i     öy i        ax 

we  readily find  that 

/a_ + u   S_\ (iLi + ^2) , 0 
\ öt       Uo ax/ \dx2    h ^yz/ " 

(Note thnt ä2cp/ax2 + äVöy2   is just  the vorticity of  the perturbed flow.) 

Taking ordinary  Fourier  transforms with  respect   to space  1nd  one-sided 

ones   in time—i.e., 

iojt 
cp(x,y,(i;)  =  I       e        cp(x,y,t)  dt , 

0 

and 

1 ikx 
cp(k,y,uü)  = e cp(x,y,u))  dx 

--we   see   that 

2» 
d cp 

2 
dy 

2 « _ W(k,y,0) 
05 -  i(ku -w) 

o 

(C-l) 

where W(k,y,0)   is  the  spatial Fourier transform of  the   initial  value of 

the vorticity. 

Explicitly, 

1 -ikx 
W(k,y,0)   =1       e Acp{x,y,0)  dk 

If we introduce the Green's function Gd.y^k) by 
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G(y,y/,k) = - 
sin  ky   sin k(6   - y) 

k sin k 6 

sin ky'   sin k(6 - y) 
k sin k 6 

y s y' 

y a y 

the solution of Eq. 'C-l) Is given by: 

cp(k,y,(ü) = 
/ 

G(y y, k) nKy',o)       , 
üly'y •K; l(ku (y')-^) y 

o 

Inverting the  time Fourier transform gives 

f1   -ihu (y')t 
©(k.y.t)  =   I      e GCy.y', k)  W(k,y'pO)  dy' 

and  then 

./'../ 
lk[x-u   (y')t] 

cpCx.y.t)   = dy'   |       e 

0 

G(y,y',k)   W(k,y'0)   dk 

(C-2) 

Now,   let us consider the effect of an  Initial disturbance at x = 0, 

y  = y   .     Thus, 
o 

Acp(x,y,0)  = 6(x) 6(y - y ) 

Then W(k,y',0) = 6(y - y ) and Eq. (C-2) becomes 
o 

V(x,y,t)   = 2n  J 
lk[x-u (y )t] 

e G(y,y ,k) dk 
o 

63 

^^MMBMM 





n 

Appendix D 

BOUNDARY CONDITIONS 

" 

/ 
65 

*m 



I ■ I 

Appendix D 

BOUNDARY CONDITIONS 

There is a general class of problems, of which the transition problem 

is an example, that require a careful examination of boundary conditions. 

We first examine the question of what must be specified in order to arrive 

at a unique solution, and we then examine a set of boundary conditions 

for the specific problem under consideration.  Lastly, we show that in 

principle there is a computational scheme that follows from this speci- 

fication. 

The Navier-Stokes equations for an incompressible fluid governing 

two flows v and v are: 
1     2 

^1.8 0      2 
-Tr+Zlt2   •   ^1,2 ^ -VP1,2 + ^1,2 

V • v   =0 
-1,2 

Defining 

^ = ^1 " V2 

P = P - P 
1   2 

We find 

^ 2 
it * 2l * ^1 " i ' 7*2 = -VI + vy v 
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7 • v = 0 

* ä    ~ä    ~ä   ^x    ~   ~    ~2 

Thus, 

öv 
rr + v • yv + v • yv = -yp + w v 
n i-  ~i   ~  ~   ~^ ~ 

V • v = 0 

The energy in the difference flow, 

■/i' dt 

is governed  by 

ÖE      (I v2 irr 
ät j v ' ~i r+ -^ • v^2 * y)dt ■ -Jv • py + vj 7 • vv. v 

which may be  rewritten 

as. _ 
at 

f/ ävi avi\ i (v  •   yv     .   v + v  

-   | dslPn  .v-vn.7^-+n      v    —| 

If we suppose that vi = ^  on the boundaries, the surface terms vanish. 

Assume that 7v2 is bounded and its maximum is gi' en by 

M = max(vv ) 

SB 
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Then 

We can then write 

p ^ 2M(t)E 
ot 

2/     M(t')dt' 
0 ^ E(t) ^ E(0)e 

from which  it   follows  that  if E(0)  = 0,   E(t)   also vanishes. 

We have  therefore proved tiiat  specifying  the velocity on the bound- 

aries is enough to provide a unique solution. 

We next  turn to examine the specification of  the boundary conditions 

appropriate to  the  problem at band.     The  coordinate system is  shown in 

Figure D-l.     The  steady flow satisfies   the exact  equations 

öv dv 
X z 

v    -— + v    — 
x  dx z  dz 

^2 A2 
.   0   V O   V 

d?            /           X X 

dx dz 

ÖV 
I 

x   dx 
+   V 

dv 
2 

Z   ÖZ 

h2 

/ 

V 

/ 

/ 
y/ 

BOUNDARY 
LAYER 

/ SPACE 
S    FLOW 

FIGURE D-1      COORDINATE SYSTEM 
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dv äv 
X z 

ox dz 

The usual physical picture of boundary-layer theory involves the assump- 

tion that the flow is more slowly varying in the x direction than in the 

z direction.     Thus we may write 

—   =   E   — 
dx äex 

€   «   1 

and find 

dv dv ,ov        „      d v 
.e+v .^_€+v/ ^e

2 + _
x 

x   dcx z  öz äex j 2 2 
d(ex) äz 

dv äv 
ÖP 

v    -— e+v    -— = - -— + v 
z  o€x z dz az 

A2 A2 
O   V O   V 
 Z z 
  e  +   

2 2 
d(€x) hz. 

öv äv 
X z 

r— € + -— = 0 
dex öz 

The  divergence equation clearly requires 

v    = ev 
z z 

which yields 

dv 
x      — 

v     -— +  V 
x  dex r 

dv / d2v ,   d''v   \ 

dz dex      V 1 i/      2 
€ + e      2  / 

\d(ex) dz   / 

dv dv 
z       — z v    -— + v    r— 

x   dex z dz 
dP 2_ 
dz    2 

e 
+ v 

^2- A2" o v d v 
 z 1 z 
  e +  
^     s2 e ^ 2 
^(ex) dz 
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In order to balance the viscous and inertial forces we then must have 

v = v« 

which finally yields the standard boundary-layer equations, which 

write in the original variables 
we re- 

dP 

dv dv        a2v 
 x      _x    dP X 

x ox    z äz    ' dx +    2~ 
dz 

öv dv     ?>  v 
 »        _Z       z 

x ix z dz       2~ 
dz 

hv dv 
 X    _z 

öx   äz 

Estimating the terms yields 

dv d2v 

x äx x A 2 oz 

i 

or 

v ~ — 
x    2 

z 

z  z 

This immediately suggests the Blasius similarity solution 
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v    ■ Uf(Tl) 
x 

with 

Tl  = z/Jvx/U 

v     =-g(1fl) 
z       z 

This   leads  to the nonlinear equation 

f f "   + 2f "'  = 0 

and the boundary conditions 

f = 0 f' = 0 z = C 

f ' = 1    z -» a» 

Since these solutions are only approximate, part of thr^ flow lield that 

develops in time in the computation will result from the equation trying 

to predict the actual solutions. We look for solutions of the form 

-igt ißy ir>(x)dx 
e  e 

f = f(z)e 

and we know that the resulting equation is a form of the Orr-Sommerfeld 

equation which is fourth-order in z. Two  boundary conditions are provided 

by the vanishing of the perturbed flow at the bottom and top, and two more 

involving the derivatives are provided by the vanishing of other components 

of the velocity.  The resulting eigenvalue equation 
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yields the local s 

thickness 

h(uj,ß,a,R) ■ 0 

patial growth.  In general, defining the boundary-layer 

6' -Jvx/U 

and the Reynolds number 

R6 = 
U6' 

yie 
Xds curves of th. I.« given in Flgnre 0-..  The n.tu.l experiment of 

GIVEN FLOW,  X  INCREASING 

FIGURE D-2      STABILITY DIAGRAM FOR BOUNDARY-LAYER FLOW 

Klebanoff et  al.   (1961)   corresponds  to point A for  the upstream condition. 

To save calculational time,  the numerical calculations may be started at 

point B. which is  100 cm downstream,  and the  calculation can be  stopped 

at  point C. 

A su^ry of a  physically reasonable set of  boundary conditions that 

at  least is mathematically unique  la  then giv. n by 

(1) Global  constraint,   / dS v  .  n   •■ 0. 

(2) Bottom plate, v = 0,  no slip condition. 
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(3) Top of  region,  vx = UC»),   free stream. 

(4) Span-vise,   the  flow  is  symmetric.     Th-is,  vy = 0 at  the 
sides,  and öv  /M and övz/öy both vanish.     Although the 
original uniqueness  proof was carried out  for specified 

v,  the  surface terms vanish except  for 

J ds  n    VVT =Jdx dz  ^x ^ + vy ^ + vz ~) 

which vanishes for the specification of derivatives 

given above. 

(5) Upstream. As discussed above, the conditions are 

v  = U(z) + 6v 
x x 

v = 6v 
y  y 

(6) 

v  = 6v 
z    z 

where U(z) is the lUasius profile corresponding to a 

position 100 cm downstream from the entrance, and 6v 

is a linear combination of twr- and three-dimensional 

Tollmien-Schlichting waves.  These waves are chosen 

to correspond to the driving frequency of the ribbon 

in the Klebanoff experiment and to have the periodicity 

in y imposed by the spacers. 

Downstream.  Here we assume tbit the conditions imposed 

in (5) are simply carried downstream to a location at 

x = L corresponding to point C in the stability diagram. 

We know that the spatial growth is converted downstream 

with a velocity c that is less then U^,  Thus, for some 

period of time, chosen so that transition occurs in the 

volume of the calculational domain, the downstream 

boundary conditions will not change. 

We now wish to show that, in principle, the specification given above 

yields a method of numerical calculation.  At t = 0, the velocity xield 

is specifiel everywhere and for all t, v is specified on the boundary. 

/ 
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From the Navier-Stokes equations and V • v = 0, it follows that 

V P = -V (v • Vvj 

A Greens  function G satisfying 

V G = -6(x -   x') 

yields the solution 

= I ds (Gn 
/ 

• VP - Pn • VG) - I GV • (v • Vv) ds 

Since P is unknown on the boundary, choose n • VG = 0 there.  We are 

guaranteed then that G exists. From the normal component of the Navier- 

Stokes equation on the surface 

— v-n + v'Vv'ns 
at ~    ~    ~     ~    ~ 

-n • VP + vV v • n 

we see that n • VP is determined in terms of known quantifies.  Thus, 

f   f 2 
P=lGvVv*n-— v.n - v • Vv • n ds - J G(V . v • Vv) dt 

and is  determined everywhere.     Now,  knowing P we use 

dv 
— = -VP + vV v - v   •   Vv dt »      «.        ~ 

and the knowledge of v everywhere to advance v forward in time at every 

interior point of the calculational mesh.  In a crude sense this represenis 

a proof of the existence of solutions to these equations. 
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Appendix F 

THREE DIMENSIONAL  IN-PLACE FAST-FOURIER-TRANSFORM ARRAY 

Assume that  it  is desired that an array of  omlln  is  to be permanently 

connected with as  few connections as possible  such that three-dimensional, 

in-place,  fast  Fourier transforms  can be made of variables stored within 

the  cells,     mat  is,   if the elements of matrix A,  a    k are stored in 

cellijk,  then matrix B with elements b^ are to be calculated according 

to" 

B = F[A] 

L-l  M-l  N-l 

% = £ E Z 
i=0 m=0 n=0 

a*m eXp 
\*n /i£       im      kn\] 
[2n     \L    +  M    + X )\ 

Stone   (1970)  has  shown how a one-dimensional FFT on an array of cells can 

be accomplished in place by a  "perfect shuffle"  interconnection between 

cells.     Only two  inputs  and  two outputs  per  cell  are required.     Despain 

(1974) has shown now FFT operations such as those used within the cells 

used by Stone can be implemented without  calculating or storing the 

trigonometric coefficients usually employed   (cordic methods).     This makes 

practical an arr. - of simple identical cells  that  can be made to perform 

an in-place transform of variables stored in the cells. 

Three-dimensional transforms  are generally accomplished as three 

successive groups of one-dimensional transforms.     However,  it  is  possible 

to simultaneously transform in all three dimensions at the same time. 

This is of great  advantage for the three-dimensional array of cells,  since 

the "perfect shuffle"  connections are permanently connected in all three 
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dimensions and parallel data transfer (and calculations too if desired) 

can proceed simultaneously and at a much greater rate than if separate 

transforms are taken in succession. 

The connection pattt n is symmatric in all three dimensions.  Figures 

E-l and E-2 illustrate these patterns for one and two dimensions. 

80 
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FIGURE E-1       PERFECT SHUFFLE CONNECTIONS 
FOF   1-D  FFT, N =  16 

FIGURE E-2      4-BY-4 ARRAY OF CELLS FOR A 
2-D FFT NETWORK 
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